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1. INTRODUCTION

Many engineering systems are best described by sets of ordinary differential
equations (ODEs) with discontinuous right-hand sides. Examples include phase
transitions, contact mechanics, or the dynamics of physical systems controlled
by digital computers. Such systems arise in many contexts and are often re-
ferred to as hybrid systems, switched systems, or nonsmooth systems. They can
also be though of as discrete event systems augmented with differential equa-
tions. See Branicky [1995] for a discussion of various modeling paradigms. The
most basic form of such a systems is

ẋ =
{

fa(x, t), g (x) < 0
fb(x, t), g (x) ≥ 0.

(1)

Each of the functions fa and fb describing the derivative represent distinct
modes of operation of the hybrid system. We will refer to each function simply
as a mode.

Changes from one mode of operation to another, called mode switches, are
caused by state events or simply events. The occurrence of these events is trig-
gered by the zeros of an event function g (x(t)) (also called a guard or discon-
tinuity function in the literature). When such an event occurs the first deriva-
tive of the solution trajectory becomes discontinuous. Of particular interest is
the fact that embedded or software based control systems can be modeled in
such a fashion (see, e.g., Maler and Pnueli [2003] and other in that series).
In such a case, there can be many modes and their connectivity may be quite
complex.

Multi-agent hybrid systems are groups of individual interacting hybrid sys-
tems. More precisely, we define multi-agent hybrid systems as collections of
individual hybrid systems, each called agents, in which the there is no agent-
to-agent coupling in the right hand sides of the differential equations. However,
the event functions which trigger mode transitions may depend on the global
state vector. This concept is best illustrated through an example. Consider the
simplified kinematics of two automated highway vehicles:


ż1

ẏ1

θ̇1


 =




cos(θ1)

sin(θ1)
0


 v1(t) +




0
0
1


 ω1(t), (2)
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ẏ2
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0


 v2(t) +




0
0
1


 ω2(t), (3)

where the superscripts 1 and 2 are used to distinguish between the state (posi-
tion and orientation in the plane) of the first and second cars (i.e., agents 1 and
2), x1 = [z1 y1 θ1] and x2 = [z2 y2 θ2]. The functions v1(t), v2(t), ω1(t) and ω2(t)
are the forward and turning velocities of the two cars respectively. These time-
dependent (perhaps implicitly) functions are considered inputs to the system
and are supplied by the automatic control system. The control system may have
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a library of possible functions for the velocity and turning rate, which it selects
among based on current operating conditions. For example, under nominal op-
eration the vehicles are to drive in a straight line; however, if the two vehicles
come within R feet of each other, an emergency collision avoidance controller
would be activated and both the cars would steer away from one another. In
such a situation perhaps:

ω1 =
{

0, g (x1, x2) ≥ 0

1, g (x1, x2) < 0
(4)

g (x1, x2) = (x1 − x2)2 + ( y1 − y2)2 − R2 ≤ 0. (5)

Obviously much more sophisticated examples and control laws could be used,
however, the representative features of this example are that the right-hand
sides of the differential equations for an individual car’s dynamics do not depend
on the state of the other car; yet the condition for switching control laws depends
on the states of several agents.

Examples of such systems abound. Automated highway systems [Deshpande
and Semenzato 1995], free-flight air traffic control [Tomlin et al. 1998], coop-
erative mobile robotic systems [Fierro et al. 2002], cellular biology [Alur et al.
2001], and multibody systems simulated for graphics applications all can be
modeled this way—the dynamics of each vehicle, plane, or robot are decoupled;
however, certain critical events which are relevant to the simulation (e.g., col-
lisions) depend on the states of pairs of agents. Also, note that the partitioning
of the agents can change throughout the course of the simulation. Two bodies
can collide and stick together for a brief duration, in which case their ODE’s
are coupled and they are a single agent. Likewise, the collision avoidance mode
for the automated vehicle example may make use of a closed loop feedback law,
in which case the velocity for car 1 is determined based on the position of car 2.
Coupling of the differential equations, either through software or physical in-
teraction, makes it necessary to consider the two systems as subsystems of a
single agent for the purposes of simulation.

Traditionally, the need to properly detect and manage such state events has
suggested the use of a single global integration step size, which is necessarily
the minimum acceptable step size across all agents. Because the differential
equations of each agent are decoupled, this is not required and often leads
to severe loss of simulation efficiency, especially in applications with a large
number of agents. This phenomena is explained in Section 2.

This article introduces an alternate simulation algorithm that allows each
agent to use a different step size, resulting in an asynchronous simulation.
The effect is that the average step size is much larger resulting in significant
decreases in computation time. In Section 3, we review work related to asyn-
chronous simulation. In Section 4, our methodology for selecting integration
step sizes, while properly handling state events, is presented along with re-
sults on the need for “roll back”. The overall algorithm is introduced in Section 5
and illustrated via example in Section 6. Section 7 quantifies the algorithms
advantages over the traditional approach in terms of computational cost. The
role of the step size selection scheme is modelled statistically and the effect of
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the additional overhead of the new algorithm is examined. In Section 8, the
performance improvement is determined experimentally.

2. BACKGROUND AND CHALLENGES

In Cellier [1979], it was shown that the proper way to simulate any hybrid
system is to numerically integrate all of the differential equations until t∗ –
the first time at which g (x(t)) = 0. At this point, the numerical integration is
stopped, any applicable mode switches are activated and the integration may
be restarted, using x(t∗) as the new initial condition. This technique is referred
to as discontinuity locking and is widely accepted as the standard hybrid
system simulation methodology. This requirement of stopping the integration
precisely when g (x(t∗)) = 0 gives rise to the event detection problem. Since
numerical integrations are performed in discrete time, T ∈ {t1, t2, . . . , tk , . . .}
with step sizes hk = tk − tk−1, it is difficult to find t∗ exactly. Much work has
been done on the problem and most reliable approaches use interpolants to
approximate the state between steps and then check these interpolants to find
the time of zero crossings of g (x) (e.g., Shampine et al. [1991], Park and Barton
[1996], Esposito et al. [2001b], and Bahl and Linninger [2001]).

It is well known that, when simulating hybrid systems, a failure to detect an
event can have disastrous results on the global solution due to the nonsmooth
nature of the problem [Branicky 1995]. Works detailing requirements for hy-
brid simulators list accurate event detection as a primary concern [Mosterman
1999]. Event detection in hybrid systems is, in itself, a very difficult prob-
lem [Shampine et al. 1991].

A second important issue in numerical integration is managing the tradeoff
between efficiency and the desired accuracy, on-the-fly, by varying the step size.
Large step sizes result in more efficient simulations but decrease the accuracy
and stability of the results. Small step sizes are required to maintain strin-
gent accuracy requirements when the solution to the differential equation is
ill-behaved, however the computations become extremely expensive due to the
large number of steps needed to complete the simulation. Automatic step size
selection schemes attempt to optimize this tradeoff by selecting the largest
possible step size consistent three criteria: (1) maintaining the estimated trun-
cation error within a desired range; (2) maintaining numerical stability; and
(3) accurate event detection.

Traditionally, all hybrid system simulators use a single global notion of time,
meaning the integration of all agents is synchronized using the same time
discretization. In such a scheme, at each iteration, a candidate integration step
size, hi for agent i, is computed for each agent. This candidate represents the
maximum step which will result in an acceptable truncation error. The only
acceptable choice of a global step size–if one wishes to maintain each agent
with the acceptable range of truncation error–is the minimum among all the
agent’s candidate step sizes, h = min[h1, . . . , hN ]. This selection means some
agents will be simulated with an unnaturally small step size—resulting in a
generally inefficient integration scheme. In particular as the number of agents
increases, h tends to decrease on average.
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Note that the decision to use a global step size is not motivated by the differ-
ential equations. Had this been a purely smooth system of decoupled differential
equations (no events), the optimal efficiency would be obtained by permitting
each agent to use the largest acceptable step size. This would result in an
asynchronous simulation in which each agent proceeded at its own “fastest”
acceptable simulation rate.

The motivation for using a traditional global choice of step sizes is entirely
attributed to the coupled nature of the event detection problem. If agents 1
and 2 are simulated with different step sizes, and hence different time meshes
T 1 = {t1

1 , t1
2 , . . . , t1

k } and T 2 = {t2
1 , t2

2 , . . . , t2
k }, state estimates for the two agents

are produced at different points in time. Deciding if an event has occurred now
becomes nontrivial because merely evaluating g (x1, x2) ≤ 0 requires x1 and
x2 be evaluated at the same time instant—that is, g (x1(tk), x2(tk)) is mean-
ingful while g (x1(t j ), x2(tk)) with t j �= tk is not. Rather than address this
issue traditional simulators simply use a global notion of time to simplify
bookkeeping, despite the decrease in performance. Satisfying these two com-
peting objectives, increasing efficiency through the largest possible step sizes
while ensuring events are properly detected, is the central challenge addressed
here.

3. RELATED WORK

Excellent works on the event detection problem in general are cited above; how-
ever, it is only recently that specialized modelling languages [Alur et al. 2000]
and simulation environments [Deshpande and Semenzato 1995] have become
available for large scale multi-agent hybrid systems. Relevant work includes
two tangentially related fields: Multirate numerical integration methods and
Distributed Discrete Event System Simulation (DDESS).

Given a group of coupled, purely smooth differential equations (i.e., no
events) which inherently evolve at different time scales, Multirate integration
techniques attempt to efficiently integrate the system of ODE’s by using dif-
ferent integration rates, or step sizes for each equation (see Gear and Wells
[1984], Engstler and Lubich [1996], or Esposito and Kumar [2001], for exam-
ple). By using the appropriate size time step for each ODE it is hoped that the
overall computational effort for the system will be reduced. Significant chal-
lenge lies in attempting to simulate two coupled differential equations using
different time meshes. Often one must evaluate the derivative of the so-called
fast variables at a point in time at which values of the slow variables have not
been computed. This is typically accomplished by constructing some appropri-
ate interpolant for the slow variables so that they may be approximated at off
mesh points, when needed.

In spirit, the goal of multirate simulation is the same as the goal of this
work: reduced computation time through asynchronous integration. However,
in practice the challenges are quite different. The primary concern of multirate
methods is accommodating coupling between the right-hand sides of two ODEs
being integrated at different rates–a nonexistent issue in the multiagent prob-
lem because all coupled ODE’s in our scheme are simulated at the same rate.
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Likewise multirate methods do not address the problem of locating discrete
events—the central concern in this article.

A second more closely related area is Distributed Discrete Event System Sim-
ulation (DDESS). Given a set of loosely decoupled but interacting Discrete
Event Systems (DES), the idea is to make the best use of any available compu-
tational resources by simulating each DES on a different computer on a local
network. Each DES is referred to as a “process” and is simulated in isolation.
When a DES generates a message which is relevant to another DES, a message
is sent over the network to the computer that is simulating that process. Com-
plications arise because at any given instant, some of the individual process
simulations may have progressed further along than others. This motivates
the introduction of “local clocks” since there is no true notion of global time in
an asynchronous distributed simulation. When a process sends a message, it
appends to the message a time stamp which bears the value of its local clock at
the instant when the message was generated. The contents of this message may
alter the evolution of the receiving process; however the time-stamp will gener-
ally not match the receiving process’s local clock. This means that the message
may be in the “past” or “future”. Future events pose little problem, however
handling past events requires that the process must undo or “roll back” its sim-
ulation to a point where its local time clock is earlier than the time at which the
message was generated. This necessarily implies that the process must store a
history of its evolution so that it may always roll the simulation back. Roll back
becomes expensive when many processes are involved because the rollback of
one process may in turn trigger the rollback of another and so on, resulting in
what is called a cascading rollback.

An active area of research in DDES concerns finding the best way to minimize
rollback. Approaches fall into two categories: conservative and optimistic. Con-
servative approaches only allow each process to proceed up until a certain safe
time [Fujimoto 2000] (a time before which it can be guaranteed no rollback will
be necessary). Some processes must wait idle upon reaching this point in their
simulation until other processes catch up resulting in underutilized resources.

In Jefferson [1985], the Time Warp Algorithm was introduced which was the
first optimistic simulation methodology. In the optimistic approach each pro-
cess is allowed to advance at its own rate hence no resources sit idle; however
frequent rollback is possible. Jefferson’s algorithm included an elegant mech-
anism called antimessaging to reliably deal with rollback. Since then there
has been an explosion of research in the field exploring the tradeoff between
idle resources and the cost of rollback (see, e.g., Lubachevsky [1989], Steinman
[1992], or Carothers et al. [1999]). Many are still built on the Timewarp algo-
rithm. They explore such issues as the best strategy for periodically exchanging
information to minimize rollback. Many also consider topics specific to dis-
tributed computation such as network delays and bandwidth. It is obvious
that this work bears relation to multi-agent hybrid systems; however since
the systems are purely discrete there are no challenges related to integrating
the differential equations. Also, the challenges associated with implementing
a simulation algorithm on multiple processors are beyond the scope of this
article.
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Mirtich [2000] introduced a multibody Newtonian mechanics simulator
for graphics applications which is built upon the Time Warp algorithm
[Jefferson 1985]. In this framework, each rigid body is considered a process
with its own local clock; collisions and other changes in contact states (rolling,
sliding, etc.) play the role of messages or discrete events. This framework per-
mits the use of an asynchronous integration procedure. Although there is some
additional overhead associated with the method as the number of bodies in-
creases, the performance of the method appears to be superior to traditional
synchronous rigid body simulators by approximately one order of magnitude.
It was shown that these savings increase as the number of agents grow. The
goal of this work is identical in spirit to Mirtich’s—reduce the computational
effort required to simulate large multi-agent systems through asynchronous
simulation and careful handling of discrete events. The key difference is that
Mirtich’s work exploits many unique features of Newtonian Mechanics and uses
collision detection algorithms, specific to polyhedral bodies, to detect “events”.
This specificity allows the simulator to achieve only slightly subrealtime perfor-
mance; however, it is not general enough to apply to arbitrary hybrid systems.
Similar issues are addressed in Nicol and Perrone [2000] which addresses the
special structure of wireless communication systems.

A second important related work is Hur and Lee [2002], which introduced
an algorithm for distributed (and asynchronous) multi-agent hybrid system
simulation. Several heuristics for determining the frequency with which global
state information should be broadcasted. The most obvious difference between
this work and ours is that the algorithms and implementation are distributed
in Hur and Lee [2002], and therefore different issues must be addressed. A
more subtle, yet conceptually important, distinction is that the algorithms pre-
sented in Hur and Lee [2002] represent optimistic approaches to the simulation
problem—meaning that they accept possibly frequent rollback in the local time
clocks. Our work presented here can be viewed as, to borrow from the DDES lit-
erature, a conservative approach to the problem. We feel that, unlike DDES, the
only way to truly guarantee that no events are missed in hybrid simulation is to
only permit the local clocks to advance independently to the extent that it can be
shown that no events will be missed. In many ways our work and Hur and Lee
[2002] can be viewed as complementary approaches to multi-agent simulation.

4. APPROACH

In this section, we describe the idea behind our approach to selecting step sizes
for the asynchronous integration in such a way as to reliably detect events,
with minimal, if any, rollback. We defer details of the implementation, as well
as other considerations for selecting step sizes until Section 5.

Given the Multi-Agent Hybrid System

ẋi = f i(xi), i = 1, . . . , N (6)
g (x1, . . . , xN ) < 0, (7)

where superscripts index the N agents. Let xi ∈ Rni be the state of Agent i,
f i : Rni → Rni the time derivative of state xi, and g : Rn1 × · · · × RnN → R is
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the event function. Assume that f i is continuous as long as g (x1, . . . , xN ) < 0
and that g itself is smooth. Note that with no loss of generality, one may assume
that g (x1, . . . , xN ) is linear in the states since systems with a nonlinear event
function can be converted to an equivalent system with a linear event function
by appending an extra state variable as follows [Gear and Osterby 1984]:

ẋi = f i(xi) i = 1, . . . , N (8)

ẋN+1 = ∂ g
∂ X

· [ f 1 f 2 . . . f N ]T (9)

g̃ = xN+1 < 0, (10)

where X is the global state vector. For now, we assume all event functions are
linear.

Since differential equations are numerically integrated using difference
equations and the states are approximated at a discrete set of points in time
T ∈ {t1, t2, . . . , tk , . . .}, let subscripts denote the step, or iteration, number. Asyn-
chronous simulation implies there is no single global value of time, tk , instead
the simulation of each agent proceeds independently, whenever possible. As
such, local times and time steps, must be defined for each agent and they
are also denoted using superscripts. Therefore, any quantity with a super-
script i and subscript k, refers to agent i and has been evaluated at ti

k . For
example, xi

k = xi(ti
k) and f i

k = f i(xi(ti
k)). Also define the integration time step

hi
k = ti

k − ti
k−1.

As in Esposito et al. [2001b], we choose to use Predictor—Corrector numerical
methods to integrate the system (see any standard monograph on numerical in-
tegration such as Ascher and Petzold [1998]). Applying the Predictor difference
equation to the state

xi
k+1 = xi

k + hi
k+1

m∑
j=1

β j
(
hi

k+1

)
f i

k− j+1, (11)

where the β ’s are weighting functions which are polynomial functions of the
step size.

When Eq. (11) is substituted into g (x) the change in the value of the event
function with each iteration is given by,

gk+1 = g

(
x1

k + h1
k+1

m∑
j=1

β j
(
h1

k+1

)
f 1

k− j+1, . . .

xN
k + hN

k+1

m∑
j=1

β j
(
hN

k+1

)
f N

k− j+1

)
(12)

or, by linearity,

gk+1 = gk + h1
k+1

∂ g
∂x1

m∑
j=1

β j
(
h1

k+1

)
f 1

k− j+1

+ h2
k+1

∂ g
∂x2

m∑
j=1

β j
(
h2

k+1

)
f 2

k− j+1 + · · ·
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+ hN
k+1

∂ g
∂xN

m∑
j=1

β j
(
hN

k+1

)
f N

k− j+1. (13)

Using a control system analogy, Eq. (13) is analogous to a system with a
single output, g , and N inputs, h1

k+1, . . . , hN
k+1, Esposito et al. [2001a]. Now

our goal is to select these N inputs in such a way as to properly “steer” the
system to any zeros of g . However, it is important to point out that simply
driving g (x1(t1), . . . , xN (tN )) → 0 is not sufficient to detect an event. In fact
g = 0 does not correspond to a physical event unless t1

k+1 = t2
k+1 = · · · = tN

k+1. If
g = 0, but tl

k+1 �= t j
k+1, this implies that the two agents have passed though the

same point on the event surface but at different local times. Such a situation
is not a state event, it is simply an artifact of the asynchronous simulation.
Returning to the automated vehicle example, if the guard signified collisions
between the vehicles (i.e., g (x) is separation distance), the case in which g = 0
but t1

k+1 �= t2
k+1 would imply the cars passed through the same point in the

configuration space at different times, which obviously does not constitute a
collision.

Fortunately, the fact that there are more inputs than outputs implies that
there is some freedom in the selection of the step sizes. This latitude may be
used to accommodate secondary criteria. Thus N −1 additional inequalities are
added to the original event criteria, which we call synchronization constraints.
Since the labelling of the agents is arbitrary, assume that t1

k+1 ≥ t2
k+1 ≥ · · · ≥

tN
k+1. The N − 1 synchronization functions would be defined as

τ i
k+1 = ti

k+1 − t1
k+1 < 0, i = 2, . . . , N , (14)

each measuring the extent to which an individual agent’s time clock lags the
leading agent’s clock.

Physically meaningful events are now defined as

(g = 0) ∧ (
τ 2

k+1 = 0
) ∧ · · · ∧ (

τ N
k+1 = 0

)
. (15)

One must then select h1
k+1, . . . , hN

k+1 so that the simulation will precisely land
on the point in time when all of these conditions are true. Collectively, the
dynamics of the event and synchronization functions can be written as follows.


g

τ 2

...
τ N




k+1

=




g

τ 2

...
τ N




k

+ (16)




∂ g
∂x1

∑
f 1β(h1) ∂ g

∂x2

∑
f 2β(h2) . . .

∂ g
∂xN

∑
f Nβ(hN )

−1 1 0 . . . 0
−1 0 1 . . . 0

...
−1 0 0 . . . 1




k




h1

h2

...
hN




k+1

.
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Inspired by the feedback control analogy our step size selection scheme is es-
sentially a discrete time version of the feedback linearization technique from
nonlinear control theory, which uses a judicious selection of the input to cancel
the system’s nonlinear dynamics, rendering it a stable linear system.

THEOREM 4.1. By selecting choosing a value of the “gain” 0 ≤ γ < 1, defining

hi
k+1 = (γ − 1)τ i

k + h1
k+1, i = 2, . . . , N (17)

and selecting h1
k+1 as the smallest positive real root of the following polynomial

(1 − γ )gk + h1
k+1

∂ g
∂x1

m∑
j=1

β j
(
h1

k+1

)
f 1

k− j+1

+ (
(γ − 1)τ 2

k + h1
k+1

) ∂ g
∂x2

m∑
j=1

β j
(
(γ − 1)τ 2

k + h1
k+1

)
f 2

k− j+1 (18)

+ · · · + (
(γ − 1)τ N

k + h1
k+1

) ∂ g
∂xN

m∑
j=1

β j
(
(γ − 1)τ N

k + h1
k+1

)
f N

k− j+1

all events will be properly detected (within the tolerance level of the integration)
without having to roll the simulation back ( i.e., decrement k).

PROOF. Substituting Eq. (17) into Eq. (16) produces the following difference
equations for the synchronization function

gk+1 = gk + h1
k+1

∂ g
∂x1

m∑
j=1

β j
(
h1

k+1

)
f 1

k− j+1 (19)

+ (
(γ − 1)τ 2

k + h1
k+1

) ∂ g
∂x2

m∑
j=1

β j
(
(γ − 1)τ 2

k + h1
k+1

)
f 2

k− j+1 + . . .

+ (
(γ − 1)τ N

k + h1
k+1

) ∂ g
∂xN

m∑
j=1

β j
(
(γ − 1)τ N

k + h1
k+1

)
f N

k− j+1 (20)

τ i
k+1 = γ τ i

k, i = 2, . . . , N . (21)

Further substituting the roots of Polynomial (18) for h1
k+1 will yield

gk+1 = γ gk (22)
τ i

k+1 = γ τ i
k . (23)

The solution to the above difference equations is

gk = (γ )k g0 (24)
τ i

k = (γ )kτ i
0. (25)

Provided 0 ≤ γ < 1, as k → ∞, gk → 0 and τ i
k → 0 for all i = 2, . . . , N ,

implying that the simulation will terminate at the event. Furthermore, if ini-
tially g , τ 1, . . . , τ N < 0, this equilibrium point is approached strictly from the
right. This implies that there is no danger of advancing the local clocks too far,
eliminating the need for rollback.
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Several observations are worth pointing out.

(1) The step size selection suggested above represents the ideal step size based
on event considerations. In practice, the step size will occasionally be limited
further to reduce truncation error in the integration.

(2) Polynomial (18) is essentially the most accurate extrapolation polynomial
that can be constructed which is consistent with the underlying integration
accuracy. Since underlying state estimates are generated by a forward in-
tegration scheme it does not make senses to use the negative real root(s)
of this polynomial. Obviously, complex roots have no physical meaning as
time steps.

(3) If there are no positive real roots of the polynomial, then from the point of
view of event detection, the acceptable step size is unbounded.

(4) If γ = 0, the system will converge in a single iteration.
(5) If the event function is nonlinear the technique is still applicable, however

the statement regarding the need for rollback must be relaxed. The above
choice of step size will still cancel the first and most dominant terms of
the Taylor Series expansion of Eq. (12), however the uncancelled higher-
order terms may act as forcing functions and introduce the possibility of
overshooting the exact event time by at most one step. This is discussed
further in Esposito [2002].

5. SIMULATION ALGORITHM

The multi-agent simulation algorithm, shown below, is referred to as MAsim.
Figure 1 illustrates the simulation algorithm graphically; while the pseudo-code
in Algorithms 1 and 2 provide more detail. The process illustrated in Figure 1
resembles a traditional hybrid system simulator, using a Predictor–Corrector
integration algorithm, in many ways. First an initialization phase is required
because Predictor–Corrector integrators require a history of derivative values.
Different implementations achieve this start up process in different ways. Note
that the user specifies ε, the integration error tolerance which should not be
exceeded. The step size computation, as discussed in Section 4 is done by the
routine Algorithm 2, called MAstepSelect.

An important issue in asynchronous simulation is deciding the order in which
the individual agents should be advanced. In this case, at each iteration in the
simulation the agent whose local time clock lags the most is always selected to
be integrated. In the case of a tie, an agent may be chosen at random among the
agents with the smallest local times. At the end of each iteration, the agents
are relabelled so that t1

k+1 ≥ t2
k+1 ≥ · · · ≥ tN

k+1 to ensure that τ i
k+1 ≤ 0. Therefore,

at each iteration, agent-N is always selected for advancement. This process
of consistently selecting the agent with the lagging time clock has the effect
of bounding the maximum amount of time by which the local time clocks may
disagree. In effect,

max
i=2,...,N

[τ i] ≤ hmax, (26)
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Fig. 1. The overall simulation algorithm MAsim presented in Section 5.

where hmax is the prespecified maximum allowable step size. Since the event
detection scheme is essentially based on solving for the roots of an extrapolation
polynomial at each step, bounding the extrapolation interval helps to ensure
meaningful estimates of the event time.

In Figure 1, everything inside of the dashed box is accomplished using the
standard integration technique along with the Predictor–Corrector method.
After each new state is constructed, the approximation error in the result is
estimated and compared to a threshold. This information is used to decide if
the result should be accepted or rejected as well as to determine what herr
should be to keep the integration error within the acceptable range for the next
iteration.

Finally, it must be determined if an event has occurred. This determination
must be made using our new requirement for event occurrence, namely gk =
0 ∧ τ 2

k = 0 ∧ · · · ∧ τ N
k = 0. If indeed one has occurred, the simulation is stopped,

all mode switches are enabled and the simulation restarts in the new mode.
Note that the initialization process must be repeated since the definitions of
the derivatives have changed. If instead, it turns out that no event occurred,
the agents are relabelled so that t1

k ≥ t2 ≥ · · · ≥ tN
k to ensure that τ i

k ≤ 0, as
discussed above.
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Algorithm 1 MAsim: Multi-agent simulation algorithm

0. Given initial conditions x1(0), . . . xN (0); user defined values for hmin, hmax, and ε; and
initial estimates for h1

err . . . hN
err .

1. Initialize the integration algorithm; let k = 1.
2. Compute hN

k = MAstepSelect( f 1
k , . . . , f 1

k−m, . . . , f N
k , . . . ,

f N
k−m, hmax, hmin, hN

err,
∂ g
∂x ).

3. Integrate Agent N using hN
k via the Predictor Corrector Algorithm. Estimate error eN .

if eN < ε then
Store result.
Compute hN

err for next iteration.
k ← k + 1.

else
Reduce hN

k .
Goto 3.

end if
if g = 0 ∧ τ 2 ∧ · · · ∧ τ N then

Switch modes.
Goto 1.

else
Relabel agents 1, . . . , N in order of descending values of ti .
Goto 2.

end if

Algorithm 2 MAstepSelect: The step size selection subroutine for MAsim.

hN = MAstepSelect( f 1
k , . . . , f 1

k−m, . . . , f N
k , . . . , f N

k−m, hmax, hmin, hN
err, ∇ g ) {

for i = 1:N do
τ i = ti − t1.

end for
Z = Roots of Polynomial (18).
R = {r|r ∈ Z , Im(r) = 0, Re(r) ≥ 0}.
if R =� 0 then

hN
g = ∞.

else
h1

g = min(R).
hN

g = (γ − 1)τ N
k + h1

g .
end if
hN = max[hmin, min(hmax, min[hN

g , hN
err ])]. }

Turning our attention to the subroutine that selects the integration step
sizes, there are several issues warranting explanation. Note that even though
routine seeks to compute hN , h1 must be computed first because hN is defined
in terms of hN as in Eq. (17). Step sizes with a subscript err denote candidate
step sizes computed on the basis of controlling the truncation error; while the
subscript g denotes a step size computed based on event detection criteria. As
discussed in Section 4, the ideal step size from the point of view of event detec-
tion is computed according the smallest real positive roots of the polynomial. If
there are no such root, then hg is set to infinity. This implies that, from an event
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Fig. 2. Two automated vehicles driving in spiral trajectories.

detection perspective, there is no constraint on the step size. Finally, note that,
as with any simulation, event proximity is not the only consideration when
choosing a step size. Typically, there are user defined minimum and maximum
step sizes, hmin and hmax, as well as an estimate of the ideal step size based on
the truncation error herr. The correct choice is

hk+1 = max[hmin, min(hmax, min[herr , hg ])]. (27)

6. EXAMPLES

In this section, the effectiveness of the algorithm is demonstrated on the two
car example used to motivate the problem in Section 1, also illustrated in
Figure 2. Events occur when the two autonomous vehicles come within R
feet of each other, in practice this condition would signal an imminent col-
lision and a mode switch would activate an emergency collision avoidance
controller.

The dynamics for agent i = 1, 2 are given in Eq. (2) and Eq. (3); while the
guard is given in Eq. (5). The vi and ωi are state feedback laws (i.e., func-
tions of xi, yi and θ i) and are selected in such a way as to steer the vehi-
cles in spiral trajectories. However, Car 1 travels much faster than Car 2.
This example was simulated using the algorithm presented earlier for two
scenarios–each with a different value for the of initial states and separation
distance.

In the first example (see Figure 3 and 4) the value of D is small enough that
the robots eventually collide. The path of the robots in the plane is shown
in Figure 3 (left). Figure 3 (right) is a plot of the value of the event func-
tion versus the step number k. The value peaks first around step 70, when
Robot 1 completes a half of a rotation; finally at step number 107 the event
detection criterion becomes active and the step sizes are selected in such
a way that g → 0 exponentially. Further insight is gained by examining
Figure 4 (left), which shows the step sizes used for each agent as a func-
tion of time. Note how h1 and h2 vary independently until t ≈ 9.8 when the
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Fig. 3. The trajectory of the two robot vehicles in the plane is plotted (left); it is of interest to
detect when they come within R feet of each other. The value of the event function (separation
distance) as a function of step number is shown (right). The event function value converges to zero
exponentially.

Fig. 4. Step sizes used in the first example are shown (left). h1 and h2 are selected independently
away from the constraint but are brought into synchronization when an event is impending. The
value of τ (right), which is a measure of the discrepancy between the two local time clocks (i.e.,
asynchrony), rapidly decreases in magnitude as the event is approached.

event detection criteria begins constraining the step sizes; whereafter they
both begin adjusting the step sizes so as to synchronize the two local clocks.
This is further illustrated in Figure 4 (right), which plots the history of the
synchronization function τ . Its value rapidly approaches zero, at which point
t1 = t2.

In the second case (see Figures 5 and 6), the value of the initial separation
distance is large enough that the vehicles do not collide, but they do come very
close to one another. The trajectories of the two vehicles are shown in Figure 5
(left). There is a near miss halfway through Agent-1’s second rotation. The
history of the constraint in Figure 5 (right) shows that the value of g (x) comes
very close to zero around step number 150. During this period, the value of τ ,
Figure 6 (left), decreases in preparation for a possible event. Figure 6 (right)
shows how the step sizes were decreased to slow down the simulation. However
once the two vehicles pass each other and it becomes apparent that no collision
will occur, the step sizes quickly increase and the two local clocks are allowed
to fall out of synchronization again. Note that in these simulations, γ = 0.5 so
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Fig. 5. The trajectory of the two robot vehicles in the plane for the second example (left). The
initial condition is selected such that the two vehicles do not come within R feet of one another.
However they do approach quite closely. The value of the event function as function of the step
number is shown (right).

Fig. 6. The step sizes used in the second example are shown (left). Again, h1 and h2 are selected
to synchronize the simulation when it seems an event may occur. Once it is apparent that this is
not the case, the simulation returns to asynchrony. The magnitude of τ (right), therefore decreases
during this period but soon increases again.

that the “slow down” and synchronization, as the state approached the guard
surface, could be more easily illustrated. In practice a value closer to zero would
produce rapid convergence.

7. EFFICIENCY ANALYSIS

Recall that the primary motivation for using asynchronous simulation is to im-
prove the efficiency of the simulator. In this section, the predicted performance
of the asynchronous algorithm is modelled statistically under some assump-
tions and compared to that of the more traditional asynchronous algorithm.

7.1 The Traditional Algorithm

For the sake of comparison, the traditional synchronized algorithm is reviewed
here. The traditional algorithm makes no distinction between single agent
systems and multi-agent system. In both cases it treats the entire state vector
as if it belongs to a single system by using a single global step size; we refer
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Algorithm 3 SAsim: The traditional (i.e., single agent) hybrid system simulation
algorithm.

Given initial conditions x1(0), . . . , xN (0); user defined values for hmin, hmax, and ε; and
initial estimates for herr .
1. Initialize the integration algorithm. Let k = 1.
2. Compute hk = SAstepSelect( f 1

k , . . . , f 1
k−m, . . . , f N

k , . . . , f N
k−m, hmax, hmin, hN

err , ∇ g ).
3. fori = 1:N do

Integrate xi using hk .
Estimate error ei .

end for
e = max(e1, . . . , eN ).
if e < ε then

Store result.
Compute herr for next iteration.
k ← k + 1.

else
Reduce hk .
Goto 3.

end if
if g = 0

Switch modes.
Goto 1.

else
Goto 2.

end if

Algorithm 4 SAstepSelect: The step size selection algorithm used by SAsim, the
traditional simulation algorithm

h = SAstepSelect( f 1
k , . . . , f 1

k−m, . . . , f N
k , . . . , f N

k−m, hmax, hmin, herr , ∇ g ) {
Z = Roots (P (h)).
R = {r|r ∈ Z , Im(r) = 0, Re(r) ≥ 0}.
if R =� 0 then

hg = ∞.
else

hg = min(r).
end if
Select final step size h = max(hmin, min(hg , herr , hmax)).

to this as the Single Agent Algorithm or SAsim. The notation follows the same
convention as in the Multi-agent Algorithm MAsim.

While any suitable integration method or extrapolation polynomial can be
used, since the goal of this discussion is to illuminate the pros and cons of
asynchronous simulation with respect to the approach of using a single global
step size we assume the numerical integration in both cases is performed using
the same algorithm (Predictor–Corrector) and a very similar approach to event
detections such as that of Esposito et al. [2001b]. The polynomial P (h) which
appears in the step-select routine within the SAsim algorithm is essentially
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a “single agent” version of Eq. (18)

(1 − γ )gk + hk+1

[
∂ g
∂x1

m∑
j=1

β j (hk+1) f 1
k− j+1 + · · · + ∂ g

∂xN

m∑
j=1

β j (hk+1) f N
k− j+1

]
.

(28)
Note that the superscript on h has been dropped because there is a single global
step size; however the polynomial has the same effect of feedback linearizing
the guard dynamics.

There are two primary differences between the SAsim and MAsim algo-
rithms. In SAsim, a single ideal step size from the point of view of event detec-
tion hg is computed using, while in MAsim the event dynamics in Eqs. (18) and
(17) are used to compute N distinct step sizes, one for each agent. Obviously,
doing this requires significantly more overhead in computing the various τ ’s,
h’s and relabelling the agents. The underlying polynomial used in MAsim is
also slightly more complex.

The second difference is that in SAsim a single step size from the point
of view of the truncation error is computed. This step size is based on the
maximum of all the agents truncation error. This results in using the minimum
step size across all agents. Obviously, this implies the SAsim algorithm will, in
general, use smaller time steps and therefore requires more steps to complete
the simulation.

7.2 Average Complexity Analysis

Overall MAsim requires more computation per iteration; while SAsim requires
more iterations to complete a simulation. In this section, we attempt to quantify
this tradeoff by studying their affect on the quantity, which we call the Speed-up
Factor, defined as

S = CMA

CSA
, (29)

where CM A is the computational cost (floating point operations or CPU time)
required to simulate a specific system using MAsim and CS A is the cost of
simulating the same scenario using SAsim, assuming all parameters are equal,
such as the integration tolerance. Values of S significantly smaller than one
imply that a great speedup is obtained using MAsim.

Obviously, S is entirely problem (and implementation) dependent therefore
we choose to instead study the average Speed-up Factor. The assumption is that
since many complex factors, which cannot all be modelled, influence the step
size selection criteria we choose to make the reasonable modelling assumption
that the step size that the algorithm selects is a uniformly distributed random
variable hi ∈ [hmin, hmax]. This assumption enables us to focus on the general
effects of the tradeoff between having a higher overhead in the case of MAsim
versus being forced to use smaller step sizes in the case of SAsim. Note that the
analysis can be repeated using any distribution on the step sizes; however, the
uniform distribution is chosen because it does not clearly favor either algorithm.
In that sense, it is arguably the most “neutral” distribution. Further discussion
is postponed to Section 8.
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Since CSA = E[hSA]CI and CMA = E[hMA](CI + OH) where E[hSA] and
E[hMA] are the expected values of the step sizes chosen by the two algorithms;
OH is the additional overhead associated with the MAsim algorithm; and CI
is the cost of integrating a single agent through a single time step. Note that
CI is identical in both algorithms, provided the same integration technique is
used. Therefore,

Savg = E[hSA]
E[hMA]

·
{

1 + OH
CI

}
. (30)

Savg then depends on two factors: the ratio of the expected values of the step
size selected by each algorithm E[hS A]/E[hMA]; and the size of MA’s overhead
in comparison with the cost of integrating though a single step, OH/CI , (re-
ferred to as the relative overhead). This quantifies the discussion in Section 7.1.

7.2.1 Expected Values of Step Sizes. The assumption of a uniform distri-
bution means that the expected value of the step size for the ith agent is simply

E[hi] = (hmax − hmin)
2 + hmin

. (31)

In the case of the Multi-agent Algorithm, at each iteration step sizes h1, . . . , hN

are computed and each agent is integrated with its respective step size. So
E[hMA] = E[hi] since the expected value does not depend on i. The distribution
for hMA remains the same regardless of the number of agents.

In the case of the Single-agent Algorithm h1, . . . , hN are computed in the
same way; however, at each iteration, a single global time step must be selected
for all agents due to synchronization requirements, so

hSA = min[h1, . . . , hN ]. (32)

Therefore, one would expect the distribution of hSA to be biased toward small
step sizes (see Figure 7). It is difficult to write a closed for expression for E[hSA],
however, a normalized histogram generated numerically appears in Figure 8.
As N increases, one sees that the frequency with which small step sizes are
selected increases dramatically in the Single-agent Algorithm. It can be shown
that the expected value of this distribution takes the form

E[hSA] ≈ hmin + C1 exp(−C2N ), (33)

where C1 and C2 are positive constants. As a result

E[hSA]
E[hMA]

≈ hmin + C1 exp(−C2N )
(hmax + hmin)/2

. (34)

Therefore,

lim
N→∞

E[hSA]
E[hMA]

= 2hmin

hmax + hmin
. (35)

7.2.2 Computing the Relative Overhead. The second factor influencing
Savg is the relative overhead, which is essentially the cost of completing any
extra steps in MAsim not present in SAsim such as computing the synchro-
nization events, relabeling the agents, and calculating extra step sizes. The

ACM Transactions on Modeling and Computer Simulation, Vol. 14, No. 4, October 2004.



382 • J. M Esposito and V. Kumar

Fig. 7. The expected value of h (normalized), for the Single Agent Algorithm as a function of the
number of agents.

Fig. 8. A histogram depicting the frequency of selected step sizes (normalized) for the Single-agent
algorithm, for several values of N (the number of agents), as the number of agents becomes large.

complexity of each these components of the overhead is O(N ) in the number of
agents,

OH
CI

≈ C3 + C4N , (36)

where C3 and C4 are positive constants. This was confirmed experimentally.
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Fig. 9. The N -agent “bumper car” example. Events occur when an agent collides with one of the
walls or another agent.

Recall that the relative overhead is the overhead as a percentage of the cost of
integrating through a single step CI . Naturally CI is highly problem dependent
but it is at least 10 floating point operations. Problems with more complicated
expressions for f (x) typically have higher values of CI . Such problems favor
MAsim even further.

7.2.3 Prediction and Discussion. Using (30), (34), and (36) on can then
predict the behavior of Savg as a function of the number of agents,

Savg ≈ (hmin + C1 exp−C2 N )(C3 + C4N )
(hmax + hmin)/2

, (37)

where the particular values of the constants are problem dependent.

8. NUMERICAL EXPERIMENTS

The benchmark problem chosen to test these ideas is a larger version of the
autonomous vehicle test problem first discussed in Section 1 and presented in
Section 6. N kinematic car-like agents are confined to a rectangular “arena”.
Anytime an agent comes within a certain distance from a “wall” or another
vehicle, an event occurs and an emergency control law is activated. See Figure 9.
The dynamics are given by Eq. (2) and the functions v and ω were arbitrarily
chosen. When a collision is about to occur with either another agent or with
the boundary of the arena, the control law switches to avoid a collision. The
“agent-wall” collision events are

gi
l = clw − xi ≤ 0 (38)

gi
r = xi − crw ≤ 0 (39)
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gi
t = yi − ctw ≤ 0 (40)

gi
b = cbw − yi ≤ 0 (41)

where clw and crw and are the x coordinates of the left and right walls, and ctw
and cbw and are the y coordinates of the top and bottom walls. The “agent–
agent” collision event is

gij = (xi − x j )2 + ( yi − y j )2 − R2 ≤ 0, ∀ j �= i, (42)

where R is the range at which the emergency control law kicks in. The number
of differential equations is 3N and the number of guards is 4N + N · (N −1)/2.

The algorithms SAsim and MAsim were coded in Matlab so as to be as similar
as possible to allow a fair comparison. Parameters such as the minimum and
maximum step size, and integration tolerance were the same in both cases. The
actual numerical integration algorithms were also identical.

Experiments were conducted to determine how the speedup factor Savg
varies with the number agents. Recall that it was predicted that as the number
of agents increases, the Single Agent algorithm becomes increasingly likely to
select smaller step sizes, while the Multi-agent Algorithm is not biased toward
smaller step sizes. Data was collected for systems with 2 to 20 agents. For each
number of agents, the system was simulated for 10 randomly generated initial
conditions, using a relative error tolerence of 10−3, for a fixed duration using
both SAsim and MAsim. The number of floating point operations used by each
algorithm for a given scenario was measured using the flops command in Mat-
lab. The raw data is shown in Figure 10. Note for most of the 190 test scenarios,
with the exception of 2 of the two agent scenarios, MA outperformed SAsim.
In the case when N = 20, SAsim required, on average, double the amount of
computations required by MA.

A second factor whose impact on performance was studied is the user-
specified integration error tolerance. The performance improvement associated
with MA would be expected to decline at tighter error tolerances. This is an-
ticipated because tighter error tolerances have the effect of biasing the step
size selection mechanism toward smaller step sizes. Each of the 190 scenarios
mentioned above was simulated with three different integration errors toler-
ances, ε = 10−3, 10−4 and 10−5, for a total of 570 experiments. The number
of floating point operations used by each algorithm for a given scenario was
measured.

Based on this data the speedup ratio for each scenario was calculated. Savg
for a given number of agents and a given tolerance was computed as the mean
of the speedup ratios of the 10 random scenarios. The Savg as a function of the
number of agents is plotted in Figure 11. Each curve displays the results for
a different value of the integration tolerance. Tighter integration tolerances
have the effect of biasing the algorithms toward selecting smaller step sizes.
The dashed lines in the figure shows the overall trend, qualitatively predicted
by Eq. (37).

Clearly, the assumption that the selected step size is a uniformly distributed
random variable is an idealization and cannot be used to make quantitative
predictions on the performance. However, the data in Figure 11 and the shape
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Fig. 10. Sample experimental results on the complexity of each algorithm as a function of the
number of agents. Squares represent SAsim data and crosses are MAsim data.

Fig. 11. Experimental results: Computational cost as a function of the number of agents, for
various integration tolerances. Dash lines represent analytical predictions; while the solid line is
the geometric mean of the experimental data.

of the dashed lines obtained by fitting Eq. (37) display markedly similar quan-
titative trends. The stochastic modelling exercise clearly captures the essence
of the tradeoff at work between step size selection and overhead. It also indi-
cates that a significant efficiency gain can be realized in practice (in the case of
20 agents a factor of 5 or more).
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Of course, the actual step size “distribution” is nonuniform, which warrants
a discussion how this assumption affects the analysis. Distributions which are
non-uniform and heavily weighted around a mean will certainly bias the pre-
diction depending on how the mean varies across all agents. If all the agents
have the same distribution, with the same mean, this implies that the agents
are all varying at nearly the same time scale, in which case little advantage is to
be gained from an asynchronous simulation. On the other hand, if all agents
have the same general distribution but their means do not coincide, the asyn-
chronous simulation will be highly favored since this implies that some agents
are consistently “slow” and others consistently “fast”. In light of this, a uniform
distribution was selected since it is does not necessarily favor either of these
two extremes, representing a somewhat neutral assumption.

9. CONCLUSION

A major cause of performance loss when simulating large scale systems of ODEs
can be traced back to the requirement that a single global step size is tradi-
tionally used despite the fact that the various individual differential equations
in the system may each warrant a very different choice of step size. The only
proper choice of a global time step among each individual equation’s candidate
time step is, unfortunately, the minimum of these candidates. As a result, the
simulation often must proceed unnecessarily slowly using the smallest possible
step size.

In situations in which the coupling between the right-hand sides of the ODEs
is strong this cannot be avoided. However, we consider the special but important
case of decoupled ODE’s where the definition of the derivatives can change, or
switch, when some function of the state variables changes sign. The switching
conditions may introduce coupling between the subsystems. We refer to such
systems as multi-agent hybrid systems. Examples include groups of automated
highway vehicles, unmanned aerial vehicles, mobile robots, etc.—systems that
are nominally physically decoupled, however, through sensing, software or ac-
tual physical collisions, interactions may arise which precipitate mode changes
within the system.

In this article, a technique is introduced for simulating multi-agent hybrid
systems in an asynchronous fashion, that is without resorting to a single global
steps size. In this asynchronous simulation algorithm, each agent has its own
local time clock. During parts of the execution in which no switches occur, the
individual time clocks are allowed to advance at different rates as dictated by
the agent’s dynamics, allowing the maximum utilization of the available com-
putational resources. This complicates the event detection problem because it
is no longer sufficient to simply check the sign of the guard function since the
individual states are being reported at different points in time. We introduced
and algorithm that selects N integration step sizes for the N agents in such a
way that the individual time clocks will synchronize on-the-fly when some rel-
evant subset of the states approach a guard surface. The problem is analogous
to a multi-input multi-output control system, for which the inputs are the N
step sizes and the output functions are the guard function, along with N − 1
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synchronization functions, which measure discrepancies between the local time
clocks.

We show that while a single iteration of the new algorithm is somewhat more
expensive due to the overhead associated with adaptive synchronization, not us-
ing a global time step requires fewer total iterations. Because the performance
is somewhat problem dependent, we construct a probabilistic model of the step
size selection scheme, assuming the step size for each agent is a random vari-
able. Under the assumption that the distribution is uniform, it is shown that
average complexity of the multi-agent algorithm is approximately quadratic in
the number of agents being simulated. In contrast, it is demonstrated through
experiments that, as the number of agents increases, the average computation
time for the traditional algorithm seems to exponentially approach an upper
bound.

Experiments were conducted in which both the traditional algorithm and the
new multi-agent algorithm were used to simulate a problem many times with a
large number of randomly generated sets of initial conditions. Two parameters
were varied: the total number of agents and the integration error tolerance.
It was shown that the predicted relationship between the number of agents
and the computational cost savings was valid and that requiring finer simula-
tion accuracy serves to amplify the potential savings associated with the new
algorithm.
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